PAKISTAN STANDARD

DOUBLE-CAPPED FLUORESCENT LAMPS PERFORMANCE SPECIFICATIONS

(All Rights Reserved)
PAKISTAN STANDARDS AND QUALITY CONTROL AUTHORITY, STANDARDS DEVELOPMENT CENTRE, PSQCA Complex Street 7 A Block -3
Scheme - 36 Gulistan -e- johar Karachi

PAKISTAN STANDARD SPECIFICATION FOR DOUBLE-CAPPED FLUORESCENT LAMPS PERFORMANCE SPECIFICATIONS

0. FOREWORD

0.1 This Pakistan Standard was adopted by the authority of the Board of Directors of Pakistan Standard and Quality Control Authority after the draft prepared by the Technical Committee for "Electric Lamps (EDC-2)" had been approved and endorsed by the National Standards Committee on $19^{\text {th }}$ January 2012.
0.2 This Pakistan Standard PS: 292 was based on IEC 60081/1997 which was subsequently revise. It deemed necessary to revise the standard on the basis of latest IEC: 60081/2010 in order to keep abreast with the latest development in technology.
0.3 This Standard is an adoption of IEC: 60081 / 2010 alongwith amendment-4 and its use is hereby acknowledged with thanks.
0.4 This Standard is subject to periodical review in order to keep pace with the changing requirements and latest development in the industry. Any suggestions for improvement will be recorded and placed before the revising committee in due course.
0.5 This Standard covers technical provisions and it does not purport to include all the necessary provision of a contract.

DOUBLE-CAPPED FLUORESCENT LAMPS PERFORMANCE SPECIFICATIONS

1 General

1.1 Scope

This International Standard specifies the performance requirements for double-capped fluorescent lamps for general lighting service.

The requirements of this standard relate only to type testing. Clonditions of compliance, including methods of statistical assessment, are under consideration

The following lamp types and modes of operation are included:
a) lamps having preheated cathodes, designed for operation on a.c. mains frequencies with the use of a starter, and additionally operating on high frequency:
b) lamps having preheated high-resistance cathodes, designed for operation on a.c. mains frequencies without the use of a starter (starterless), and additionally operating on high frequency;
c) lamps having preheated low-resistance cathodes, designed for operation on a.c. mains frequencies without the use of a starter (starterless), and additionally operating on high frequency;
d) lamps having preheated cathodes, designed for operation on high frequency;
e) lamps having non-preheated cathodes, designed for operation on a.c. mains frequencies;
f) lamps having non-preheated cathodes, designed for operation on high frequency.

For some of the requirements given in this standard, reference is made to "the relevant lamp data sheet". For some lamps these data sheets are contained in this standard. For other lamps, falling under the scope of this standard, the relevant data are supplied by the lamp manufacturer or responsible vendor.

1.2 Statement

It may be expected that lamps which comply with this standard will start and operate satisfactorily at voltages between 92% and 106% of rated supply voltage and at an ambient air temperature of between $10^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, when operated with a ballast complying with IEC 60921 or IEC 60929, where relevant with a starter complying with IEC 60155 or IEC 60927, and in a luminaire complying with IEC 60598.

1.3 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050(845):1987, International Electrotechnical Vocabulary (IEV) - Chapter 845: Lighting

IEC 60061-1:1969, Lamp caps and holders together with gay	ges for the control of
interchangeability and safety - Part 1: Lamp caps	
IEC 60155:1993, Glow starters for fluorescent lamps	
IEC 60598 (all parts), Luminaires	
IEC 60921:1988, Ballasts for tubular fluorescent lamps - Performance	requirements
IEC 60927:1996, Auxiliaries for lamps - Starting devices (other Performance requirements	than glow starters) -
IEC 60929:1990, A.C. supplied electronic ballasts for tubular fluoresc requirements	ent lamps - Performance
IEC 61049:1991, Capacitors for use in tubular fluorescent and other Performance requirements	discharge lamp circuits -
IEC 61195:1993, Double-capped fluorescent lamps - Safety specification	ions
IEC 61231:1993, International lamp coding system (ILCOS)	
1.4 Definitions	
For the purpose of this International Standard, the definitions of following definitions apply.	IEC 60050(845) and the
1.4.1	
fluorescent lamp discharge lamp of the low-pressure mercury type, in which most of the several layers of phosphors excited by the ultra-violet radiat [IEV 845-07-26, modified]	light is emitted by one or an from the discharge
1.4.2	
fluorescent lamp having two separate caps and mostly of tubular form	and linear \$hape
1.4.3 nominal value approximate quantity value used to designate or identify a lamp	
1.4.4	
quantity value for a characteristic of a lamp for specified operating the conditions are specified in this standard, or assigned by the man vendor	conditions. The value and nufacturer or responsible
1.4 .5	
lumen maintenance ratio of the luminous flux of a lamp at a given time in its life to its initial being operated under specific conditions. The ratio is generally expres	al luminous flux, the lamp sed as a percentage

1.4 .6

initial readings
starting characteristics of a lamp, measured before ageing, and the electrical, photometric and cathode characteristics of a lamp, measured at the end of the 100 h ageing period

1.4.7

starting aid

conductive strip affixed to the outer surface of a lamp, or a conductjve plate which is spaced within an appropriate distance from the lamp. A starting aid is usually connected to earth potential, and can only be effective when it has an adequate potential difference from. one end of the lamp

1.4.8

reference ballast
special ballast, either inductive for lamps for operation on a.c. mains frequencies, or resistive for lamps for operation on high frequency. It is designed for the purpose of providing comparison standards for use in testing ballasts, for the selection of reference lamps and for testing regular production lamps under standardized conditions. It is essentially characterized by the fact that, at its rated frequency, it has a stable voltage/current ratio which is relatively uninfluenced by variations in current, temperature and magnetic surroundings, as outlined in the relevant ballast standard [IEC 845-08-36, modified]

1.4 .9

calibration current of a reference ballast

value of the current on which the calibration and control of the reference ballast are based

1.4 .10

type test

test or a series of tests made on a type test sample for the purpose of checking compliance of the design of a given product with the requirements of the relevant standard

1.4.11

type test sample
sample consisting of one or more similar units submitted by the manufacturer or responsible vendor for the purpose of a type test

1.5 Lamp requirements

1.5.1 General

A lamp, on which compliance with this standard is claimed, shall comply with the requirements of IEC 61195.

A lamp shall be so designed that its performance is reliable in normal and accepted use. In general, this can be achieved by satisfying the requirements of the following subclauses.

The requirements and information given apply to 95% of production.
NOTE The requirements and tolerances permitted by this standard are based on testing of a type test sample submitted by the manufacturer for that purpose. In principle, this type test sample should consist of units having characteristics typical of the manufacturer's production and be as close to the production centre-point values as possible.

It may be expected with the tolerances given in the standard that products manufactured in accordance with the type test sample will comply with the standard for the majority of the production. Due to the production spread, however, it is inevitable that there will sometimes be products outside the specified tolerances. For guidance on sampling plans and procedures for inspection by attributes, see IEC 60410.

1.5.2 Caps

The dimensions of the caps on a finished lamp shall be in accordance with IEC 60061-1.
a) For lamps with G5 or G13 caps, both pins (excluding flanges) of the two caps of a finished lamp shall pass simultaneously, freely without binding, through parallel slots, suitably spaced longitudinally to receive the lamp. The slots shall each be $2,87 \mathrm{~mm}$ wide for G5 caps, and $3,05 \mathrm{~mm}$ wide for $\mathbf{G 1 3}$ caps.
b) For lamps with R17d caps, both cap bosses of a finished lamp shall pass simultaneously, freely without binding, through parallel slots, suitably spaced longitudinally to receive the lamp with the bottom of the slots against the boss ends. The slots shall each be $6,35 \mathrm{~mm}$ deep and $9,22 \mathrm{~mm}$ wide.

1.5.3 Dimensions

The dimensions of a lamp shall comply with the values specified on the relevant lamp data sheet.

1.5.4 Starting characteristics

A lamp shall start fully within the time specified on the relevant lamp data sheet and remain alight.

Conditions and method of test are given in Annex A.

1.5.5 Electrical and cathode characteristics

a) The initial reading of the voltage at the lamp terminals shall comply with the values specified on the relevant lamp data sheet.
NOTE 1 It may be expected that over the declared lifetime of the lamp, the lamp voltage may rise typically by 5 V to 10 V .
b) The initial reading of the power dissipated by a lamp shall not exceed the rated wattage, specified on the relevant lamp data sheet, by more than $5 \%+0,5 \mathrm{~W}$.
NOTE 2 Cathode watts due to supplementary heating are not included in the rated lamp wattage unless otherwise stated on the lamp data sheet.
c) For a lamp having preheated cathodes for operation on a.c. mains frequencies starterless circuits, the initial reading of the resistance of each cathode shall be not less than the minimum value specified on the relevant lamp data sheet.
d) For a lamp having preheated cathodes for operation on high frequency, the initial reading of the resistance of each cathode shall comply with the values specified on the relevant lamp data sheet.

Conditions and method of test are given in Annex B.

1.5.6 Photometric characteristics

a) The initial reading of the luminous flux of a lamp shall be not less than 92% of the rated value.
b) The initial reading of the chromaticity coordinates x and y of a lamp shall be within 5 SDCM (standard deviation of colour matching) from the rated values.
NOTE See also Annex D on chromaticity co-ordinates.
c) The initial reading of the general colour rendering index Ra of a lamp shall be not less than the rated value decreased by three.
Conditions and method of test are given in Annex B.

1.5.7 Lumen maintenance

The lumen maintenance of a lamp shall be not less than 92% (under consideration) of the rated lumen maintenance value at any time in its life.

Conditions and method of test are given in annex C.

1.5.8 Marking

A lamp shall be marked with an identification which defines, with the aid of information made available by the manufacturer or responsible vendor, the electrical and photometric characteristics of the lamp.

1.6 Information for ballast and starter design

Refer to the relevant lamp data sheet and to annex E for information for ballast and starter design.

1.7. Information for luminaire design

Refer to annex F for information for luminaire design.

Annex A

(normative)

Method of test for starting characteristics

A. 1 General

Tests shall be made in a draught-free atmosphere at an ambient temperature of between $20^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$ and a relative humidity of 65% maximum.

Metallic parts and wires in the vicinity of the lamp, except starting aids when required, shall be avoided as far as possible.

Immediately prior to the starting test the lamps shall be kept inoperative and in an ambient temperature of between $20^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$ and a relative humidity of 65% maximum for a period of at least 24 h .

A. 2 Lamps having preheated cathodes for operation on a.c. mains frequencies with the use of a starter

A.2.1 Test circuit

Lamps shall be tested with a 50 Hz or 60 Hz supply in the circuit shown in figure A.1.

A.2.2 Ballast

The ballast used shall be of the inductive type, unless specified otherwise on the frelevant lamp data sheet, and shall comply with the requirements of IEC 60921. It shall be rated as specified on the relevant lamp data sheet. Where a capacitive circuit is specified, additionally the capacitor used shall comply with the requirements of IEC 61049.

When the ballast, at its rated voltage, is associated with a test lamp, the lamp shall dissipate a power which does not differ from its rated value by more than 4%. A test lamp is lamp whose voltage at lamp terminals does not deviate by more than 2% frdm its rated value, when operated with its reference ballast.

The preheating current, when measured at 90% of rated ballast voltqge, shall be between 1,1 and 1,2 times the rated lamp current. To obtain a value of the preheating current within this range, it may be necessary either to make a special selection from annong commercial ballasts or else to design and manufacture a ballast for this specific purpose. In some cases, it may be possible to bring the preheating current down to be within this range by adding resistance in series with the starter.

NOTE - In some cases the ballast may include an autotransformer to increase (or reduce) the voltage to the proper value for the starting and operation of the lamp. Ballasts incorporating step-up transtormers are particularly likely to be used in countries where 120 V or 100 V power systems predominate.

A.2.3 Starter

The type of glow starter to be used shall comply with the requirements of IEC 60155, and shall in any case be subject to agreement with the lamp manufacturer or responsible vendor.

A.2.4 Test voltage

The test voltage applied to the circuit shall be as specified on the relevant lamp data sheet.

A. 3 Lamps having preheated cathodes for operation on a.c. mains frequencies without the use of a starter (starterless)

A.3.1 Test circuit

Lamps shall be tested with a 50 Hz or 60 Hz supply in the circuit shown in figure|A. 2 .

A.3.2 Ballast

The ballast used shall be of the inductive type, and shall comply with the requirements of IEC 60921. It shall be rated as specified on the relevant lamp data sheet.

When the ballast, at its rated voltage, is associated with a test lamp, the lamp shall dissipate a power which does not differ from its rated value by more than 4%. A test lamp is a lamp whose voltage at lamp terminals does not deviate by more than 2% from its rated value, when operated with its reference ballast.

NOTE 1 In some cases the ballast may include an autotransformer to increase por reduce) the voltage to the proper value for starting and operation of the lamp. Ballasts incorporating transformers are particularly likely to be used in countries where $100 \mathrm{~V}, 120 \mathrm{~V}, 200 \mathrm{~V}, 277 \mathrm{~V}$ or 347 V power systems predominate.
NOTE 2 The earthing of the circuit as shown in figure A. 2 may make it necessary fo supply it thraugh an isolating transformer.

A.3.3 Starting aid

The starting aid, a metal plate, shall be connected to earth potenti申i together with one lamp cathode. Its length shall be not less than that of the lamp under test and it shall be 25 mm wide for 16 mm diameter lamps and 40 mm wide for 26 mm to 38 mm diameter lamps. The distance between the surface of the lamp and the starting aid shall be as specified on the relevant lamp data sheet.

The manufacturer or responsible vendor shall specify whether or pot the lamps require an external starting aid, and whether one cathode shall be connected to earth potential. For lamps not requiring a separate starting aid, the metal plate shall be removed.

A.3.4 Test voltages

The voltage of the heating circuit to be applied to the cathode terminals and the open circuit voltage at the lamp terminals for the starting test shall be as specified on the relevant lamp data sheet.

NOTE The voltages specified for the starting test are chosen primarily to secure rebroducibility of itest results, and are not necessarily applicable to the design of ballasts.

The voltages of the main circuit and of the heating circuits shall be applied simultaneously.
The voltage applied to the cathode heating circuits shall not be so connected as to increase the voltage of the main circuit. The two circuits shall be connected to the same phase of the supply.

The two cathode heating transformers may be replaced by one| with isolated secondary windings. The transformer(s) shall be such that the voltage does not change by more than 2% when the maximum cathode load is connected.

If the lamp does not start at the specified open circuit voltage, this voltage shall be gradually increased up to a maximum of 110% of the test value. If the lamp stil does not start, it shall be rejected. If the lamp does start, it shall be operated for 30 min at rated voltage and the normal test shall be made again after a rest period of 24 h .

A. 4 Lamps having non-preheated cathodes for operation on a.c. mains frequencies

A.4.1 Test circuit

Lamps shall be tested with a 50 Hz or 60 Hz supply in the circuit shown in figure A.3.

A.4.2 Ballast

The ballast used shall be of the inductive type, and shall comply ivvith the requirements of IEC 60921. It shall have a suitable open circuit voltage.

A.4.3 Test voltage

The open circuit voltage at the lamp terminals for the starting test shall be as specified on the relevant lamp data sheet.

NOTE - The voltage specified for the starting test is chosen primarily to secure repnoaucibility of tast results and is not necessarily applicable to the design of ballasts.

If the lamp does not start at the specified open circuit voltage, this voltage shall be gradually increased up to a maximum of 125% of the test value. If the lamp stil does not start, it shall be rejected. If the lamp does start, it shall be operated for 30 min at rated voltage, and the normal test shall be made again after a rest period of 24 h .

A. 5 Lamps for operation on high frequency

A.5.1 Test circuit

Lamps shall be tested with an a.c supply with a frequency between 2 p kHz and 26 kHz , unless otherwise specified on the relevant lamp data sheet, and in the circuits shown in:

- figure A. 4 for lamps with preheated cathodes;
- figure A. 5 for lamps with non-preheated cathodes

NOTE - The frequency range specified for this lamp test is not necessarily applicable to the design of ballasts (see also annex E).

A.5.2 Ballast

The non-inductive ballast resistor shall be so adjusted that the high frequency lamp current is equal to the value as specified on the relevant lamp data sheet.

A.5.3 Starting aid

For lamps with preheated cathodes, the starting aid, a metal plate, shall be connected to earth potential together with one lamp cathode. Its length shall be not less than that of the lamp under test, and it shall be 25 mm wide for 16 mm diameter lamps, and 40 mm wide for 26 mm to 38 mm diameter lamps. The distance between the surface of the lamp and the starting aid shall be as specified on the relevant lamp data sheet.
r
The manufacturer or respdsible vendor shall specify whether or not the lamps require an external starting aid, and whether one cathode shall be connected to earth potential. For lamps not requiring a separate starting aid, the metal plate shall be removed

A.5.4 Test voltage and current

For lamps with preheated cathodes, the cathode heating supplies shalll be adjusted to supply a preheat current as specified on the relevant lamp data sheet. Quring the preheat time, specified on the relevant lamp data sheet, switch S_{1} shall be kept open and switches S_{2} closed. After this period of time, switches S_{2} shall be opened simultaneously as switch S_{1} is closed.

The open circuit voltage applied to the circuit shall be as specified on the relevant lamp data sheet.

Figure A. 1 - Circuit diagram for starting test for lamps for operating with starter

Figure A. 2 - Circuit diagram for starting test for lamps with preheated cathodes for operation on starterless circuits

Figure A.3 - Circuit diagram for starting test for lamps with non-preheated cathodes

Figure A. 4 - Circuit diagram for starting test for lamps with preheated cathodes for operation on high frequency

Figure A. 5 - Circuit diagram for starting test for lamps with non-preheated cathodes for operation on high frequency

Annex B (normative)

Method of test for electrical, photometric and cathode characteristics

B. 1 Electrical and photometric characteristics for lamps without supplementary cathode heating during operation

B.1.1 General

Photometric characteristics shall be measured in accordance with the relevant recommendations of the CIE (Commission Internationale de l'Eclairage).

Before the lamps are measured for the first time, they shall be aged for a period of 100 h of normal operation.

Measurements shall be made after a sufficient period of stabilisation of the lamp. An appropriate stabilisation time is 15 min , after the conditioning period as declared by the manufacturer or responsible vendor.

NOTE During shipping and normal handling of the lamps, e.g. rotating of the lamp, any excess amount of mercury may be distributed in small droplets within the discharge tube. Proper conditioning is reached when all the excess mercury has been collected at the coldest spot in the tube. Experience has shown that initially this process of lamp conditioning may take up to 20 h . A lamp is ready for measurement when it has passed the conditioning period.

For conditioning and pre-warming, the lamp may be operated in a location distant to the test location. When moving to the test location, provided that the lamp has been kept in the same position and not subjected to vibration or shock, and no warm glass parts are touched (i.e. creating a parasitic cold spot), a stabilisation period of 15 min to 60 min (see Table B.1) is necessary in the test location. To avoid cooling down of warm glass parts during moving the lamp to test location, thermally insulating gloves or similar technique shall be used. The interruption of the supply should be as short as possible. If deviating from the values in the Table B.1. the relevant specification of the manufacturer should be observed. See Clause B. 4 for lamp conditioning and test position for 16 mm tube diameter lamps.

Measurement of light output and lamp operating voltage shall be taken at least once per minute. During the final 5 min of stabilisation time, the difference of maximum and minimum readings of light output and lamp operating voltage shall be less than 1% of the average of the readings. If this is not feasible, the real fluctuation shall be stated.

Table B. 1 - Stabilisation time versus off time

Conditioning (can be part of aging)	h	20				
Scope			For lamps $>20 \mathrm{~mm}$ diameter		For lamps $<20 \mathrm{~mm}$ diameter	
Off time (transport to test location)	min	≤ 5	>5	≤ 30	>30	
Stabilisation time	min	15	60	60	20×60	

[^0]PS: 292/2012

Figure B.1a - Typical flowchart of photometry test

Lamps shall be tested in a horizontal operating position.
The connections of the lamp contacts, with reference to the terminations of the ballast, shall not be changed for the whole course of the tests. For lamps having caps with two pins or contacts, by convention the following arrangement is used (where x indicates the contacts to be connected to the main circuit):

Lamps shall be tested in a draught-free atmosphere at an ambient temperature of $25^{\circ} \mathrm{C} \pm$ $1^{\circ} \mathrm{C}$, unless otherwise specified on the relevant lamp data sheet.

When measuring in a suitable photometric integrator, the ambient temperature is taken to be the air temperature at the following position:

- at a distance from the bulb wall of not less than 10% of the nominal diameter of the integrator;
- at a distance from the wall of the integrator of not less than one-sixth of the nominal diameter of the integrator;
- near the lamp axis on a level with the centre of the lamp.

A uniform temperature distribution in the integrator shall be maintained during the test. In the horizontal plane containing the lamp centre, except in the immediate vicinity of the lamp wall, a uniform temperature of $\pm 1^{\circ} \mathrm{C}$ is required. Special care shall be taken if the integrator incorporates a heating system.

The temperature is usually measured by a thermocouple or a thermistpr, both protected against radiation by a small shield.

B.1.2 Test circuit

Lamps shall be tested in the circuits shown in:

- figure B. 1 for lamps having preheated cathodes;
- figure B. 2 for lamps having non-preheated cathodes;
- figure B. 3 for lamps for operation on high frequency.

Before making the measurements, any device used to start the lamp shall beldisconnected from the test circuit.

In the test circuit for lamps for operation on high frequency, given in figure B.3, connections shall be as short and straight as possible to avoid parasitic capacitance. The parasitic capacitance parallel to the lamp shall be less than 1 nF .

B.1.3 Ballast

Ballasts used for these tests shall be reference ballasts as specified in IEC 60921 for a.c. mains frequencies, or IEC 60929 for high frequency. The reference ballast electrical characteristics shall be as specified on the relevant lamp data sheet.

B.1.4 Supply voltage

The supply voltage shall be equal to the rated voltage of the reference ballast. During periods of stabilization, the supply voltage shall be stable within $\pm 0,5 \%$, this tolerance being reduced to $0,2 \%$ during measurement.

For a.c. mains supplies, the frequency shall be equal to the rated frequency of the reference ballast, with a tolerance of $0,5 \%$. For high frequency supplies, the frequency shall be between 20 kHz and 26 kHz , unless otherwise specified on the relevant lamp deta sheet.

NOTE - The frequency range specified for this lamp test is not necessarily applicable to the design of ballasts, see also annex E .

The wave shape of the supply voltage shall be a sine wave. The total harmonic content shall not exceed 3% of the fundamental (for high frequency supplies this value is under consideration). The total harmonic content is defined as the root-mean-square (r.m.s.) summation of the individual harmonic components, using the fundamental as 100%.

NOTE - This implies that the source of supply should have sufficient power, and that the supply circuit should have a sufficiently low impedance, compared with the ballast impedance. Care should be taken that this applies under all conditions that occur during the measurement.

B.1.5 Electrical instruments

Instruments shall be of the true r.m.s. type, essentially free from waveform errors, and suitable for the frequency of operation.

The voltage measuring circuit of the instruments shall have an impedance of not less than 100000Ω, and shall be disconnected when not in use. The current measuring circuit of the instruments shall have the lowest possible resistance and, if necessarv, shall be short circuited when not in use.

When measuring the lamp wattage, no correction shall be made for the wattmeter consumption (the circuit connection being made on the lamp side of the current measuring circuit).

When measuring the luminous flux, the voltage measuring circuit of the voltmeter and of the wattmeter shall be open.

B. 2 Electrical and photometric characteristics for lamps with supplementary cathode heating during operation

B.2.1 General

For lamps having preheated low-resistance cathodes, for operation on 60 Hz starterless circuits, the characteristics shall also be measured with supplementary cathode heating during operation.

The conditions and method of test are the same as given in B. 1 except for the test circuit.
For lamps measured according to this method, the lamp power shall be considered to be the sum of the power delivered through the reference ballast (as measured in the conventional portion of the circuit) and the power used to heat the cathodes (being the power measured on the input side of the cathode heating transformers, minus the transformer losses determined as described in B.2.4).

B.2.2 Test circuit

Lamps shall be tested in the circuit shown in figure B.4.
Supply voltage A is the voltage specified for the reference ballast for the type of lamp being measured. Supply voltage B shall have separate voltage control so that it can be adjusted independently of supply voltage A. The voltage sources A and B shall come from the same supply, and shall not come from different phases of a polyphase power supply.

The primary voltage of the low voltage transformers, used to heat the lamp cathodes shall be adjustable in order that the desired output voltage may be obtained. The cathode transformers shall be so connected that their voltage subtracts from the voltage of the ballast circuit.

B.2.3 Cathode heating transformers

The two cathode heating transformers (or one transformer with two secondary windings) shall have good regulation, and have a current capacity several times the actual current required. They shall also have low losses to minimize the effect that any error in the measurement of these losses would have on the total lamp watts.

The centre value of the cathode voltage for low-resistance cathodes is $3,6 \mathrm{~V}$, and it is convenient to use a regular $6,3 \mathrm{~V}$ filament transformer operated at a reduced primary voltage so that an output of $3,6 \mathrm{~V}$ is obtained.

B.2.4 Calibration of cathode heating transformer

Each cathode transformer (or pair of transformers) shall be individually calibrated to determine the power loss that will exist during normal operation.

This power will vary with the current to be supplied to the particular type of cathode involved. These loss values, however, need to be determined only once for a given transformer for each cathode type. The appropriate transformer loss can then be applied to the measurement of the various types of lamps.

It is convenient to obtain a "voltage calibration" on each transformer. This involves determining the primary voltage that must be set in order to obtain the required secondary output voltage. This calibration, although not entirely essential, makes it possible to use primary voltage settings in all routine work, thus avoiding the need for constant use of the more fragile lowrange thermocouple voltmeters.

In making the calibration, each secondary winding of the transformer jshould be connected to a substitution resistor, having the electrical characteristics specified for the particular cathode type involved. The primary voltage should be adjusted so that the average of the two secondary voltages is $3,6 \mathrm{~V}$, and the value of the primary voltage should then be recorded. It is essential that this calibration is repeated for any other cathode type with which the transformer is used.

The power loss in the transformer (core loss and $E^{2 / R}$ loss considered together) shall also be determined for each load condition. With the primary voltage again set so as to give the specified voltage of $3,6 \mathrm{~V}$ across the substitution resistors, the power input shall be read. (Since the total wattage to be read is likely to be below 10 W , a low-range wattmeter shall be used). The loss in the transformer may be calculated as the wattage input reading, minus the instrument corrections, and also minus the power absorbed by the substitution resistors. This power in the resistors can be calculated as $E^{2 /} R$ for each of the windings.

The transformer loss is assumed to be constant for all lamps having the same cathode resistance, and no allowance is necessary for the slight differences resulting from variations in actual cathodes.

B. 3 Cathode characteristics of lamps having preheated cathodes for operation on starterless circuits

B.3.1 Test circuit

Cathode resistance shall be measured using a suitable d.c. supply or a 50 Hz or 60 Hz a.c. supply.

B.3.2 Lamps for operation on a.c. mains frequencies

The voltage at the cathode terminals shall be adjusted to the value of the test voltage given on the relevant lamp data sheet, and the current shall be measured. From these, after deduction of the consumption of the voltmeter, the cathode resistance shall be qetermined.

B.3.3 Lamps for operation on high frequency

The current flowing through the cathode shall be adjusted to the value of the test current given on the relevant lamp data sheet, and the supply voltage shall ke measured. From these, after deduction of the voltage across the ammeter, the cathdde resistance shall be determined.

B. 4 Measurement procedure for the determination of the maximum luminous flux of $16 \mathbf{~ m m}$ tube diameter lamps for operation on high frequency

B.4.1 General

This procedure applies when a requirement is given on the lamp data sheet concerning maximum luminous flux at ambient temperatures other than $25{ }^{\circ} \mathrm{C}$. The tolerance of the ambient temperature at which the maximum luminous flux shall be obtained is given on the relevant lamp data sheet.

B.4.2 Conditioning of the lamp

The lamp shall be aged for 100 h in a vertical position. During ageing the cold chamber shall be at the lowest point. The position of the cold chamber shall be indicated by the manufacturer.

Measurements shall be made after a sufficient period of stabilization of the lamp. After stabilization, any lamp movement shall be carried out carefully with ho vibration ior shock and with the cold chamber always at the lowest point.

B.4.3 Absolute measurement

Apart from the conditioning procedure, the rated luminous flux measurement is performed as described in clause B. 1 .

B.4.4 Relative measurement

The maximum luminous flux measurement is based on a relative measurement of either luminous flux or of illuminance versus ambient temperature.

B.4.4.1 Equipment for relative measurement and operating position

A thermally insulated container of suitable shape (for example a rectangular box) and size shall be used.

Alternative: an un-insulated container, located inside a temperature-controlled chamber, i.e. "double-layer" (which allows air to circulate around the container without the presence of a draught on the lamp).

The internal temperature of the container shall be controllable within the temperature range of $20^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$, so that the temperature at which maximum luminous flux occurs is included.

The inner surface of the container shall be coated with a suitable maferial dependant upon the applied detection method (the recorded signal shall be proportional to luminous flux or illuminance in the temperature range of measurement).

The lamp shall be mounted in the centre of the container in a horizontal position. The distance between the lamp and the walls of the container shall be at least 200 mm in all directions.

Electrical connection to the lamp pins shall be made using a method which minimizes heat sinking of the lamp (for example using lamp holders with low thermal capacitance or connecting directly to the lamp pins).

The temperature within the container shall be measured at a position which is level with the centre of the lamp in the vertical plane, equidistant between the lainp ends in the horizontal plane and equidistant between the lamp and container wall.

NOTE In practice, an additional measurement point at the control point of the lanpp is advised (in the vicinity of the cold chamber which determines the mercury vapour pressure).

A suitable light detector (thermally insulated and/or stabilized) shall be mounted outside the container or inside the container if its temperature dependence is known. For luminous flux measurements, the light detector shall receive light via reflection only with the direct light being blocked by a baffle. For illuminance measurements, the light detector shall receive light directly from the lamp.

The recorded signal from the detector shall be proportional to the luminous flux or the illuminance in the temperature range of measurement.

B.4.4.2 Execution of relative measurements

The lamp shall be tested in the appropriate circuit given in figure B.3. The reference ballast shall be positioned outside the container. After starting, the supply voltage of the reference ballast shall be held constant throughout the measurement.

There shall be no artificial air movement in the container. However, alir ventilation is needed in order to obtain an isotropic temperature distribution.

The measurement shall start at the lowest temperature of interest. It is recommended that the rate of temperature rise in the range of $20^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ be less than $5 \mathrm{~K} / \mathrm{h}$.

NOTE This is required in order to achieve reproducible results with minimum measurement uncertainties.
Measurements of the luminous flux or illuminance and the ambient tamperature shall be made in suitable temperature/time intervals throughout the period of measurement.

B.4.5 Translation into absolute values

Combining the absolute measurement with the relative measurements will provide a complete luminous flux versus ambient temperature profile for the lamp.

PS: 292/2012

Figure B. 1 - Circuit diagram for measurement of electrical and photometric characteristics for lamps with preheated cathodes

Figure B. 2 - Circuit diagram for measurement of electrical and photometric characteristics for lamps with non-preheated cathodes

Figure B. 3 - Circuit diagram for measurement of electrical and photometric characteristics for lamps for operation on high frequency

Figure B. 4 - Circuit diagram for measurement of electrical and photometric characteristics for lamps with supplementary cathode heating

Annex C

(normative)

Method of test for lumen maintenance and life

C. 1 General

The luminous flux at a given time in the life of a lamp shall be measured as specified in Annex B.

During the life testing, lamps shall be operated as follows:

- lamps shall be operated at an ambient temperature of between $15{ }^{\circ} \mathrm{C}$ and $50{ }^{\circ} \mathrm{C}$. Excessive draughts shall be avoided, and the lamps shall not be subject to extreme vibration and shock;
- lamps shall be operated in a horizontal position;
- the connections of the lamp contacts, with reference to the terminations of the ballast, shall not be changed for the whole course of the tests;
- lamps shall be operated in the circuit for which they are intended by the manufacturer;
- lamps shall be switched off for 15 min after each 2 h 45 min of operation.

NOTE 1 In North America, a cycle of 3 h on, 20 min off is used.
NOTE 2 If an additional cycle deviating from the 3 h cycle is requested, a 12 h cycle (11 h on, 1 h off) should be used.

C. 2 Lamps for operation on a.c. mains frequencies

The ballast used shall comply with the requirements of IEC 60921. For capacitive circuits additionally the capacitor used shall comply with the requirements of IEC 61049.

When the ballast, at its rated voltage, is associated with a test lamp, the lamp shall dissipate a power which does not differ from its rated value by more than 4%. A test lamp is a lamp whose voltage at lamp terminals does not deviate by more than 2% from its rated value, when operated with its reference ballast.

NOTE The choice of the type of ballasts for these tests is left open, but the type used can have an influence on the results of the test. It is recommended that the type of ballast employed should be stated. In case of doubt, the use of an inductive type of ballast is recommended because such a type has the smallest number of parameters capable of affecting the results.
For lamps operated with a starter the preheating current, at rated supply voltage, shall not differ by more than 10% from the rated value specified on the relevant lamp data sheet.

For lamps operated with a starter, the type of starter to be used shall comply with the requirements of IEC 60155, and shall in any case be subject to agreement with the lamp manufacturer or responsible vendor.

During the life testing, the supply voltage and frequency shall not differ by more than 2% from the rated voltage and frequency of the ballast used.

C. 3 Lamps for operation on high frequency

The ballast used shall comply with the requirements of IEC 60929.

Annex D

(normative)

Chromaticity co-ordinates

D. 1 General

This annex covers the standardized rated values and tolerance areas for the chromaticity coordinates x and y applying to fluorescent lamps.

For lamps with non-standardized chromaticity co-ordinates, the rated values shall be assigned by the manufacturer or responsible vendor.

NOTE - The chromaticity co-ordinates x and y are specified according to the CIE 1931 Standard Colorimetric System (see CIE Publication 15-2) ${ }^{1)}$. The tolerance areas are based on the ellipses defined by D.L. MacAdam in his paper "Specification of small chromaticity differences", published in the Journal of the Optical Society of America, vol 1, No. 1, Jan. 1943, pp 18-26.

The tolerance areas are defined by MacAdam ellipses of 5 SDCM (standard deviation of colour matching). Co-ordinates 5 SDCM away from the rated values are given by the equation:

$$
g_{11} \Delta x^{2}+2 g_{12} \Delta x \Delta y+g_{22} \Delta y^{2}=5^{2}
$$

in which Δx and Δy represent the deviations with respect to the rated co-ordinates, while the coefficients g_{11}, g_{12} and g_{22} depend on these rated values. These coefficients are the basis for calculating θ, a and b, where θ is the angle between the major axis of therellipse and the x-axis, and a and b are the major and minor semi-axes of an ellipse of 1 SDCM.

D. 2 Standard chromaticity co-ordinates

For the standardized chromaticity co-ordinates the following rated values x and y apply for the different lamp "colours" (with the correlated colour temperatures T_{G} in kelvin given as extra information):

"Colour"	$\boldsymbol{T}_{\mathrm{c}}$	\boldsymbol{x}	\boldsymbol{y}
F 6500	6400	0,313	0,337
F 5000	5000	0,346	0,359
F 4000	4040	0,380	0,380
F 3500	3450	0,409	0,394
F 3000	2940	0,440	0,403
F 2700	2720	0,463	0,420

PS: 292/2012

For the coefficients g_{11}, g_{12} and g_{22}, the following values apply:

| "Colour" | g_{11} | | g_{12} | g_{22} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F 6500 | 86×10^{4} | -40×10^{4} | 45×10^{4} | |
| F 5000 | 56×10^{4} | -25×10^{4} | 28×10^{4} | |
| F 4000 | $39,5 \times 10^{4}$ | $-21,5 \times 10^{4}$ | 26×10^{4} | |
| F 3500 | 38×10^{4} | -20×10^{4} | 25×10^{4} | |
| F 3000 | '9 $\times 10^{4}$ | $-19,5 \times 10^{4}$ | $27,5 \times 10^{4}$ | |
| F 2700 | 4. | $\times 10^{4}$ | $-18,6 \times 10^{4}$ | 27×10^{4} |

For θ, a and b, the following values apply:

"Colour"	θ	a	b
F 6500	$58^{\circ} 23^{\prime}$	b	
F 5000	$59^{\circ} 37^{\prime}$	0,00223	0,00274
F 4000	$54^{\circ} 00^{\prime}$	0,00313	10,00118
F 3500	$52^{\circ} 58^{\prime}$	0,00317	10,00134
F 3000	$53^{\circ} 10^{\prime}$	0,00139	
F 2700	$57^{\circ} 17^{\prime}$	0,00278	0,00136

The tolerance areas are shown in figures D. 1 to D.6, together with the rated values, a part of the black body locus, and lines of constant correlated colour temperatute.

D. 3 Shifted chromaticity co-ordinates

For some lamps, as specified on the relevant lamp data sheet, slightly shifted chromaticiy coordinates apply, but only for types having a general colour rendering index less than 80 .

The same tolerance areas as given in D. 2 shall be used, but centred on the rated values given in the following table:

"Colour"	\boldsymbol{x}	\boldsymbol{y}
F 6500	0,309	0,337
F 5000	0,342	0,359
F 4000	0,375	0,380
F 3500	0,403	0,394
F 3000	0,433	0,403
F 2700	-	-

PS: 292/2012

Figure D. 2 - Tolerance area for standard "colour" F 5000

Figure D. 3 - Tolerance area for standard "colour" F 4000

Figure D. 4 - Tolerance area for standard "colour" F 3500

PS: 292/2012

Figure D. 6 - Tolerance area for standard "colour" F 2700

Annex E

 (informative)
Information for ballast and starter design

E. 1 General

In order to safeguard proper functioning of the lamp, the relevant information, given on the lamp data sheet and in this annex, should be taken into account when designing ballasts and starters.

E. 2 Prestarting conditions for high frequency operated lamps

For lamps operated on high frequency and having preheated cathodes, the requirements for proper preheating are specified on the relevant lamp data sheet. An explanation of these requirements is given in Annex D of IEC 60929 and in Annex B of IEC 60927.

For some lamps, additional information concerning high frequency non-preheat starting requirements is given on the relevant lamp data sheet.

E. 3 Frequency to be used for high frequency operated lamps

For lamps designed for operation on high frequency, the lamp data sheets prescribe a frequency range for the reference ballast and for the testing of lamps (starting, electrical and photometric characteristics). This frequency range has been chosen for ease of reproducing test results and is not intended to restrict the design of high frequency ballasts, where for practical reasons a higher frequency may be appropriate.

E. 4 Tolerable DC-offset during preheat

The peak-peak value of the open-circuit voltage shall be less than or equal to 2,8 times maximum r.m.s value of the open-circuit voltage for $t \leq t_{\mathrm{s}}$. Narrow voltage peaks during the first half period of the mains voltage after switching on preheat shall be disregarded when testing the control gear against this sub-clause.

The DC-offset (mean value) of the open-circuit voltage shall not exceed the r.m.s. open circuit voltage for $t \leq t_{\mathrm{s}}$ as specified on the relevant lamp data sheet. In cases where the r.m.s. open circuit voltage for $t \leq t_{\mathrm{s}}$. is specified to less than 200 V , the DC-offset of the open-circuit voltage shall be less than or equal to 200 V .

Annex F (informative)

Information for luminaire design

F. 1 General

In order to safeguard proper functioning of the lamp, the relevant information, given in this annex, should be taken into account when designing luminaires.

F. 2 Free space

For mechanical acceptance of lamps complying with this standara, a free space should be provided in the luminaire, based on the maximum lamp dimensions specified on the relevant lamp data sheet.

F. 3 Series capacitors used in capacitive circuits

An initial capacitor tolerance of 10%, which is typical for shunt connected capacitors, is unsuitable for series capacitors. The summation of capacitor and ballast tolerances may lead to poor lamp performance, when unfavourable tolerances coincide.

In order to satisfy the requirements specified on the relevant lamp data sheets, either the capacitor tolerance should be narrow, or the capacitor and the inductive reactance component of the ballast should be selected so that unfavourable tolerances do not coincide.

F. 4 Starting aid

Operation of lamps on a.c. mains or high frequency starterless circuits requires, in most cases, the presence of a conductive starting aid at earth potential. This can be a conventional part of the luminaire.

The distance between the surface of the lamp and the starting aid should not exceed the value specified for the lamp starting characteristics on the relevant lamp data sheet. In addition, a minimum distance of 3 mm should be observed.

2 Data sheets

2.1 General principles of numbering of data sheets

The first number represents the number of this standard "60081", follawed by the letters "IEC".
The second number represents the data sheet number.
The third number represents the edition of the page of the data sheet. In cases where a data sheet has more than one page, it is possible for the pages to have different edition numbers, with the data sheet number remaining the same.

2.2 Diagrammatic data sheets for location of lamp dimensions

2.2.1 List of diagrammatic data sheets

60081-IEC-01 Linear-shaped lamps with G5 or G13 caps.
60081-IEC-02 Linear-shaped lamps with Fa6, Fa8, R17d caps or W4.3×8.5d.

PS: 292/2012

2.3 Lamp data sheets

2.3.1 List of lamp data sheets

$\begin{gathered} \text { Sheet No. } \\ \text { 60081- } \\ \text { IEC- } \end{gathered}$	Nominal wattage W	Frequency		Nominal dimensionsmm	Cap	Circuit		Cathode type
		Hz				AC mains	High frequency	
1020	4	50	60	16×150	G 5	Starter	-	Preheated Preheated
1030	6	50	60	16×225	G 5	Starter		Preheated
1040	8	50	60	16×300	G 5	Starter	-	Preheated
1060	13	50	60	16×525 26×450	G 5 G 13	Starter	Starterless	Preheated
2120	15	50	60	26×450 26×550	G 13 G 13	Starter	Starterless	Preheated
2215**	15 18	50	60 -	26×550 26×600	G 13	Starter	Starterless	Preheated
2220	18	50 50	60	32×600	G 13	Starter	-	Preheated
2240	20	50	60	38×600	G 13	Starter	-	Preheated
2315	25	50	60	38×970	G 13 G 13	Starter	Starterless	Preheated
2320	30	50 50	60	26×900 38×900	G 13 G 13	Starter	Starterless	Preheated
2340 2420	30 36	50 50	-	26×1200	G 13	Starter	Starterless	Preheated
2425	38	50	-	26×1050	G 13	Starter	Starterless	Preheated
2430	40	50	60 60	32×1200 38×1200	G 13 G 13	Starter Starter	-	Preheated
2440	40	50	60	38×1200 26×1500	G 13	Starter	Starterless	Preheated
2520	58 65	50	-	32×1500	G 13	Starter	-	Preheated
2540	65	50	-	38×1500	G 13	Starter	$\stackrel{-}{\text { Starterless }}$	Preheated
2620	70	50	60	26×1800	G 13	Starter	Starterless	Preheated
2640	75	50	-	38×1800 38×1500	G 13 G 13	Starter	-	Preheated
2660**	80	50 50	-	38×1800	G 13	Starter	-	Preheated
$2670 *$ 2840	85 100	50	-	38×2400 38×2400	G 13	Starter Starter	-	Preheated Preheated
2880**	125	50	-	38×2400	G 13			ated, high resistance
3020	4	50	60	16×150	G 5	Starterless	-	Preheated, high resistance
3030 3040	6	50	60	16×225 16×300	G 5	Starterless	_	Preheated, high resistance
3040 4240	8	50	60	38×600	G 13	Starterless	-	Preheated, high resistance
4340	30	50	-	38×900	G 13	Starterless	-	Preheated, high resistance
4440	40	50	60	38×1200	G 13	Starterless		Preheated, high resistance
4540	65	50	-	38×1500	G 13	Starterless		Preheated, high resistance
4640	75	50	-	38×1800	G 13	Starteriess	-	Preheated, high resistance
4660*	80	50	-	38×1500	G 13	Starterless	-	Preheated, high resistance
$4670 *$ 4880	85	50	-	38×1800 38×2400	G G 13	Starterless		Preheated, high resistance
4880	125	50	-	$\frac{38 \times 2400}{32 \times 600}$	G 13	Starterless		Preheated, low resistance
5230	20	50	60	32×600 38×600	G 13	Starterless	_	Preheated, low resistance
5240	20	50 50	60	38×900	G 13	Starterless	-	Preheated, low resistance
5340 5430	40	50	60	32×1200	G 13	Starterless	-	Preheated, low resistance
5440	40	50	60	38×1200	G 13	Starteriess		Preheated, low resistance
5540	65	50	-	38×1500	G 13	Starterles		Preheated, low resistance
5840	85	50	60	38×2400 38×1200	G 13	Starterless		Preheated, low resistance
5960	60	-	60	38×1200 38×1800	R17d R17d	Starterless	-	Preheated, low resistance
5970 5980	87 112	-	60 60	38×1800 38×2400	R17d R17d	Starterless Starterless	-	Preheated, low resistance
5980	112	-	60	38×2400	W4.3	Starterless	Starterless	Preheated
6030	6			7×220 7×320	W4.3	-	Starterless	Preheated
6050	11			7×420	W4.3	-	Starterless	Preheated
6060	13			7×520	W4.3	-	Starterless	Preheated
6520	14			16×550	G 5	-	Starteriess	Preheated
6.530	21			16×850	G 5		Starterless	Preheated
6620	24			16×550	G 5		Starterless	Preheated
6640	28			16×1150 16×1450	G 5		Starterless	Preheated
6650	35			16×1450	G 5		Starterless	Preheated
6730	39			16×850	G 5		Starterless	Preheated
6750	49			16×1450 16×1150	G 5		Starterless	Preheated
6840	54			16×1150	G 5	-	Starterless	Preheated
6850	80			16×1450 26×600	G 13	-	Starterless	Preheated
7220	16			26×600 26×1200	G 13 G 13		Starterless	Preheated
7420	32		k	26×1200 26×1500	G 13 G 13		Starterless	Preheated
7520	50		k	26×1500		Starterless	S	Non-preheated
8240	20	50	-	38×600 38×1200	Fa6	Starterless	-	Non-preheated
8440	40	50	-	38× 3800	Fa6	Starterless	-	Non-preheated
8540	65	50	60	38×1200	Fa8	Starterless	-	Non-preheated
8640	39	-	60 60	38×1200	Fa8	Starterless	-	Non-preheated
8740	57	-	60	38×1800 38×2400	Fa8 Fa8	Starterless	-	Non-preheated
8840	75	-	60	38×2400			Starterless	Non-preheated
9420	32		0 k	26×1200 26×1500	Fa6	-	Starterless	Non-preheated
9520	50		K					

* Mainly intended for replacement purposes.
2.3.2 List of lamp data sheets in order of wattage

Sheet No. 60081-IEC-	Nominal wattage W	Frequency		Nominal dimensions mm	Cap	Circuit		Cathode type
		Hz				AC mains	High frequency	
1020	4	50	60	16×150	G 5	Starter	-	
3020	4	50	60	16×150	G 5	Starterless		Preheated, high resistance Preheated
1030	6	50	60	16×225 16×225	G 5	Starter Starterless	-	Preheated, high resistance
3030 6030	6	50	60	16×225 7×220	W4.3	Starterless	Starterless	Preheated
1040	8	50	60	16×300	G 5	Starter	-	Preheated
3040	8	50	60	16×300	G 5	Starterless	-	Preheated, high resistance
6040	8	25		7×320	W4.3	-	Starterless	Preheated
6050	11	25		7×420	W4.3	Starter	Starterless	Preheated
1060 6060	13	50	60	16×525 7×520	G5 W4.3	Starter	Starterless	Preheated
6060	13 14	22		7×520 16×550	W4.3	-	Starterless	Preheated
2120	15	50	60	26×450	G 13	Starter	Starterless	Preheated
2215*	15	50	60	26×550	G 13	Starter	Starterless	Preheated
7220	16	2	k	26×600	G 13	-	Starterless	Preheated
2220	18	50	60	26×600	G 13	Starter	Starterless	Preheated Preheated
2230	20 20	50 50	60	32×600 38×600	G 13 G 13	Starter Starter	-	Preheated
2240 4240	20 20	50 50	60	38×600 38×600	G 13 G 13	Starterless	-	Preheated, high resistance
5230	20	50	60	32×600	G 13	Starterless		Preheated, low resistance
5240	20	50	60	38×600	G 13	Starterless	-	Preheated, low resistance
8240	20	50	-	38×600	Fa6	Starterless	Starterless	Non-preheated
6530	21		k	16×850	G 5	-		Preheated
6620	24	2	k	16×550	G 5	art	Starterless	Preheated
2315 6640	25	50	-	38×970 16×1150	G 13 G 5	Starter	Starterless	Preheated
2320	30	50	60	26×900	G 13	Starter	Starterless	Preheated
2340	30	50	-	38×900	G 13	Starter	-	Preheate
4340	30	50	$-$	38×900	G 13	Starterless		Preheated, high resistance
5340	30	50	60	38×900	G 13	Starterless	Starterless	Preheated, low resistance Preheated
7420	32		k	26×1200	G 13	-	Starterless Starterless	Preheated Non-preheated
9420	32		k	26×1200 16×1450	Fa6	-	Starteriess	Preheated
6650	35	${ }_{50}^{2}$	k	16×1450 26×1200	G 5 G 13	Starter	Starterless	Preheated
2425	38	50	-	26×1050	G 13	Starter	Starterless	Preheated
6730	39		k	16×850	G 5	-	Starterless	Preheated
8640	39	-	60	38×1200	Fa8	Starterless	-	Non-preheated
2430	40	50	60	32×1200	G 13	Starter	-	Preheated
2440	40	50	60	38×1200	G 13	Starter	-	Preheated Preheated, high resistance
4440	40	50	60	38×1200	G 13	Starterless	-	Preheated, high resistance Preheated, low resistance
5430	40	50	60	32×1200	G 13	Starterless	-	Preheated, low resistance Preheated, low resistance
5440	40	50	60	38×1200 38×1200	G 13 Fa6	Starterless Starterless	-	Preheated, low resistance Non-preheated
8440 6750	40	50	k	38×1200 16×1450	Fa6	Starterless	Starterless	Non-preheated Preheated
7520	50		k	26×1500	G 13	-	Starterless	Preheated
9520	50		k	26×1500	Fa6	-	Starterless	Non-preheated
6840	54			16×1150	G 5	-	Starterless	Preheated
8740	57	-	60	38×1800	Fa8			
2520	58	50	-	26×1500 38×1200	G 13 R17d	Starter Starterless	Starterless	Preheated Preheated, low resistance
5960 2530	60	$\overline{50}$	60	38×1200 32×1500	R17d G 13	Starterless Starter		Preheated, low resistance Preheated
2530	65	50	-	38×1500	G 13	Starter	-	Preheated
4540	65	50	-	38×1500	G 13	Starterless	-	Preheated, high resistance
5540	65	50	-	38×1500	G 13	Starterless	-	Preheated, low resistance
8540	65	50	$\overline{-}$	38×1500	Fa6	Starteriess		Non-preheated
2620	70	50	60	26×1800	G 13	Starter	Starterless	Preheated Preheated
2640	75	50	-	38×1800 38×1800	G 13 G 13	Starter Starterless	-	Preheated Preheated, high resistance
4640	75 75	50	60	38×1800 38×2400	G 13 Fa8	Starterless Starterless	-	Preheated, high resistance Non-preheated
2660*	80	50	6	38×1500	G 13	Starter	-	Preheated
4660**	80	50	-	38×1500	G 13	Starterless	- ${ }^{-}$	Preheated, high resistance
6850	80			16×1450	G 5	-	Starterless	Preheated
2670*	85	50	-	38×1800	G 13	Starter	-	Preheated Preheres
4670**	85	50	-	38×1800	G 13	Starterless	-	Preheated, high resistance
5840	85	50	60	38×2400 38×1800	G 13	Starterless	-	Preheated, low resistance
5970	87 100	50	60	38×1800 38×2400	R17d G 13	Starteriess	-	Preheated
2840 5980	112	-	60	38×2400	R17d	Starterless	-	Preheated, low resistance
2880**	125	50	-	38×2400 38×2400	G 17 G 13	Starter Starterless	-	Preheated Preheated, high resistance
4880	125	50	-	38×2400	G 13	Starterless		

PS:
292/2012

These drawings are intended only to indicate dimensions to be controlled and are to be used in conjunction with the relevant lamp standard sheets

G5 cap (see sheet 7004-52 of IEC 60061-1) G13 cap (see sheet 7004-51 of IEC 60061-1)

IEC 1514/97
For lamps with G5 and G13 caps
The values for dimensions A, B and C are derived from a basic value, designated X
$A=$ cap face to cap face
$\mathrm{A}_{\text {max }}=\mathrm{X}$
$B=$ cap face to end of opposite pins
$\mathrm{B}_{\text {max }}=\mathrm{X}+\mathbf{7 , 1} \mathrm{mm}$
$B_{\text {min. }}=X+4,7 \mathrm{~mm}$ (in some countries, $B_{\text {min }}=X+4,6 \mathrm{~mm}$)
$C=$ overall length of the lamp between pin ends
$C_{\text {max. }}=X+(2 \times 7,1)=X+14,2 \mathrm{~mm}$
$\mathrm{C}_{\text {min }}=$ not specified
The dimensions given on the lamp data sheets comply with the above system.
NOTE 1 - When converting the thus calculated values to inches it is obvious that the consistency between the rounded off converted values is lost.

NOTE 2 - In some instances, the dimensions in national specifications differ slightly from those in the data sheets. Because these specifications are well established, it is not intended that they should be changed. The dimensions in the data sheets are quoted as a desirable objective.

NOTE 3 - Original USA types are sometimes designated by the nominal overall length in inches of the lamp assembled in two lampholders, each $5 / 16$ inch thick for G5 caps and $3 / 8$ inch thick for $\mathbf{G} 13$ caps.

| DOUBLE-CAPPED FLUORESCENT LAMPS | |
| :---: | :---: | :---: |
| DIAGRAMMATIC DATA SHEET FOR LOCATION | |
| OF LAMP DIMENSIONS | |
| | Linear-shaped |

These drawings are intended only to indicate dimensions to bejcontrolied and are to be used in conjunction with the relevant lamp standard sheets

Fa6 cap (see sheet 7004-55 of IEC 60061-1)

FaB cap (see sheet 7004-57 of IEC 60061-1)

R17d cap (see sheet 7004-56 of IEC 60061-1)

	DOUBLE-CAPPED FLUORESCENT LAMP DATA SHEET						Page 2
ILCOS: FD-25-E-G13-38/970							
Reference ballast characteristics							
Frequency Hz	Nominal wattage W	Rated voltage V	Calibration cu A	rrent	Voltage	current ratio Ω	Power factor
50	25	220	0,290			605	0,10
60	-	-	-			-	-
Information for ballast design							
Frequency					Hz	50	60
Preheat cathode current			A		in.	0,261	-
					ax.	0,609	-
Open circuit voltage across starter			V	Min.	r.m.s.)	198	-
Open sircuit voltage across lamp			V	Max.	(peak)	400	-
Substitution resistor for both cathodes in series					Ω	50	-
Voltage across starter with lamp operating			V	Max.	r.m.s.)	128	-
Information for starter design							
Pulse voltage V			Non-reclosure voltage V				
Minimum			Maximum				
400			140				
\cdot							
Texte français au verso French text overleaf		60081-IEC-2315-1					Publication CEI 60081 IEC Publication 60081

סUUO M Milifiu. L © IEし. LUU

The maximum luminous flux shall be obtained at an ambient temperature between $34{ }^{\circ} \mathrm{C}$ and $38{ }^{\circ} \mathrm{C}$.

Chromaticity coordinates: see D.2, annex D.

[^0]: NOTE For 16 mm lamps with datasheet numbers $1020,1030,1040$ and 1060, the stabilisation time for lamps $>20 \mathrm{~mm}$ is applied.

