PS:3580-2014

ICS No. ICS No.23.040.20

PAKISTAN STANDARD

PLASTIC PIPING SYSTEMS- POLYETHYLENE (PE) ROPES AND

(ALL RIGHTS RESERVED) PAKISTAN STANDARDS AND QUALITY CONTROL AUTHORITY STANDARDS DEVELOPMENT CENTRE (STANDARDIZATION WING), 1ST FLOOR, ST-7-A, BLOCK-3 **GULISTAN-E-JAUHAR** Karachi

PAKISTAN STANDARDS SPECIFICATION

FOR

PLASTIC PIPING SYSTEMS- POLYETHYLENE (PE) PIPES AND FITTINGS FOR WATER SUPPLY

(1st Revision)

0 FOREWORD:

0 FOREWORD: 0.1 This Standard was adopted by Pakistan Standard & Quality Control Authority after recommendations of the Technical Committee for "BUILDER'S & HARDWARE & SANITARY FITTINGS" (BBC-6) on 30-01-2014. The same had been approved and endorsed by the Civil Engineering National Standards Committee on 28-02-2014.

0.2 This Standard has been prepared after taking into consideration the views and suggestions of the manufacturers, technologists, suppliers and utilizing agencies. re

0.3 This Pakistan Standard No.3580, 1997 (1st Revision in 2014) was prepared with the help of foreign specification which has been since revised/modified. Dence to keep up a par with the latest technology, it has been revised accordingly. In preparation of this Standard the Technical Committee acknowledges with thanks the assistance drawn from the standard ISO:4427-2 First Edition 2007-2008-1.

0.4 This Standard is subject to periodical review in order to keep pace with development in industry. Any suggestions for improvement will be recorded and placed before the committee in due course.

FOR

PLASTIC PIPING SYSTEMS- POLYETHYLENE (PE) PIPES AND FITTINGS FOR WATER SUPPLY

1 **SCOPE**

This Pakistan Standard specifies the pipes made from polyethylene (PE) intended for the conveyance of water for human consumption, including raw water prior to treatment and water for general purposes.

It also specifies the test parameters for the test methods to which it refers.

In conjunction with the other parts of Pakistan Standard, it is applicable to PE pipes, their joints, to joints with components of PE and to mechanical joints with components of other materials, intended to be used under the following conditions:

- a) A maximum operating pressure (MOP) up to and including 25 bar¹);
- temperature

For applications operating at constant NOTE 1: temperatures greater than 20° C and up to 40° C, see ISO 4427-1:2007 (PS...) , Annex A.

This Pakistan Standard covers a range of NOTE 2: maximum operating pressures and gives requirements concerning colours and additives. It is the responsibility of the purchaser or specifier to make the appropriate selections from these aspects, taking into account their particular requirements and any relevant national guidance or regulations and installation practices or codes.

Three types of pipe are specified:

- PE pipes (outside diameter d_n), including any identification stripes;
- PE pipes with co-extruded layers on either or both the outside and/or inside of the pipe (total outside diameter d_n), as specified in annex A, where all layers have the same MRS rating.
- PE pipes (outside diameter d_n) having a peelable, contiguous, thermoplastics additional layer on the outside of the pipe ("coated pipe"), see Annex A.

2 NORMATIVE REFERENCES

The following reference documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1133:2005, Plastics — Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics (PS...)

ISO 1167-1, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 1: General method (PS...)

ISO 1167-2, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 2: *Preparation of pipe test pieces (PS...)*

b) An operating temperature of 20°C as the reference www.iso 2505, *Thermoplastics pipes — Longitudinal temperature*

ISO 3126, Plastics piping systems - Plastics components — Determination of dimensions (PS...)

ISO 4065, Thermoplastics pipes — Universal wall thickness table (PS...)

4427-1:2007, *Plastics* piping ISO svstems *Polyethylene (PE) pipes and fittings for water supply* — Part 1: General (PS...)

4427-5:2007, Plastics piping ISO systems Polyethylene (PE) pipes and fittings for water supply — Part 5: Fitness for purpose of the system (PS...)

ISO 4433-1:1997, Thermoplastics pipes — Resistance to liquid chemicals — Classification — Part 1: Immersion test method (PS...)

ISO 4433-2:1997, Thermoplastics pipes — Resistance to liquid chemicals — Classification — Part 2: Polyolefin pipes (PS...)

ISO 6259-1:1997, **Thermoplastics** pipes Determination of tensile properties — Part 1: General test method (PS...)

ISO 6259-3:1997, **Thermoplastics** pipes Determination of tensile properties — Part 3: Polyolefin pipes (PS...)

ISO 11357-6:2002, Plastics — Differential scanning calorimetry (DSC) — Part 6: Determination of oxidation induction time (PS...)

ISO 11922-1:1997, Thermoplastics pipes for the conveyance of fluids — Dimensions and tolerances — Part 1: Metric series (PS...)

1 bar = $0,1 \text{ MPa} = 10^5 \text{ Pa}; 1 \text{ MPa} = 1 \text{ N/mm}^2$ 1)

3 Terms, definitions, symbols and abbreviated terms

For the purposes of this document, the terms, definitions, symbols and abbreviated terms given in ISO 4427-1 (PS...) apply.

3 Material

4.1 Compound

The material from which the pipes are made shall be in accordance with ISO 4427-1 (*PS...*).

4.2 Identification compound

Where applicable, the compound used for identification stripes and co-extruded layers (see 5.2) shall be manufactured from a PE polymer manufactured from the same type of base polymer as used in the compound for pipe production.

For co-extruded layers used for identification purposes, Annex A applies.

5 General characteristics

5.1 Appearance

When viewed without magnification, the internal and external surfaces of pipes shall be smooth, clean and free from scoring, cavities and other surface defects such as would prevent conformity of the pipe to this Pacstan Standard. The pipe ends shall be cut cleanly and square to the axis of the pipe.

not for

5.2 Colour

The pipes shall be either blue or black, or black with blue stripes. For coated pipes in accordance with Annex A, this applies to the coating.

Blue pipes or black pipes with blue stripes are intended for drinking water only.

For above-ground installations, all blue components and components with non-black layers should be protected from direct UV light.

5.3 Effect on water quality

Attention is drawn to the requirements of national regulations (see also the Introduction). See ISO 4427-1:2007, Clause 5 (*PS...*).

6 Geometrical characteristics O^{ς}

6.1 Measurements The dimensions of the pipe shall be measured in accordance with ISO 3126 (*PS...*). In case of dispute, the measurements of dimensions shall be made not less than 24 h area manufacture and after conditioning for at least 4 h at (23 ± 2) °C.

6.2 Mean outside diameter and out-ofroundness (ovality)

The mean outside diameters, *dem*, and the out-of-roundness (ovality) shall be in accordance with Table 1.

Table 1 — Mean outside diameters and out-of-roundness

Dimensions in millimetres

	Nominal outside	Mean outsid	e diameter ^a	Maximum
Nominal size DN/OD	diameter d _n	d _{em min}	d _{em max}	out-of-roundness (ovality) ^b
16	16	16,0	16,3	1,2
20	20	20,0	20,3	1,2
25	25	25,0	25,3	1,2
32	32	32,0	32,3	1,3
10		40.0	10.1	
40	40	40,0	40,4	1,4
50	50	50,0	50,4	1,4
63	63	63,0	63,4	1,5
75	75	75,0	75,5	1,6
90	90	90,0	90,6	1,8
110	110	110,0	110,7	2,2
125	125	125,0	125,8	2,5
140	140	140,0	140,9	2,8
I	l	I	۰٬۰۰۰	1
160	160	160,0	161,0	3,2
180	180	180,0	181,1	3,6
200	200	200,0	201,2	4,0
225	225	225,0	226,4	4,5
		anth . r		
250	250	250,0	251,5	5,0
280	280	1280,0	281,7	9,8
315	315	315,0	316,9	11,1
355	355	355,0	357,2	12,5
400	400	400,0	402,4	14,0
450	C Q450	450,0	452,7	15,6
500	500	500,0	503,0	17,5
560	560	560,0	563,4	19,6
620 1	620	620.0	622.9	22.1
710	710	710.0	716.4	22,1
800	800	800.0	907.2	_
900	900	900.0	908.1	_
000	000	000,0	000,1	
1 000	1 000	1 000.0	1 009.0	_ I
1 200	1 200	1 200 0	1 210 8 9	_
1 400	1 400	1 400 0	1 /12 6 9	
1 400	1 400	1 400,0	1 412,0 -	_
1 600	1 600	1600,0	1 614,4 %	
1 800	1 800	1 800.0	1 816.2 °	
2 000	2 000	2 000,0	2 018,0 °	_
For coiled pipe and for	straight lengths with dia	meters ≥ 710, the maxi	mum out-of-roundness s	shall be agreed between
manufacturer and purch	aser.			
a In accordance with ISC	O 11922-1:1997, grade B, fo	or sizes ≤ 630 and grade A	for sizes ≥ 710.	
In accordance with ISC	O 11922-1:1997, grade N, fo	or sizes ≤ 630, is measured	at the point of manufacture	е.

c Tolerance calculated as 0,009 d_{em} and does not conform to grade A in ISO 11922-1:1997.

NOTE: Tolerance bands in accordance with ISO 11922-1 are calculated as follows, as applicable.

a) Grade A: $0,009d_n$ rounded to the next greater 0,1 mm with a minimum value of 0,3 mm and a maximum value of 10,0 mm.

b) Grade B: $0,006d_n$ rounded up to the next greater 0,1 mm with a minimum value of 0,3 mm and a maximum value of 4,0 mm.

c) Grade N:

- for diameters $\leq 75 \text{ mm}$ (0,008 d_n + 1) mm,

- for diameters W 90 mm and ≤ 250 mm (0,02 d_n) mm,

- for diameters > 250 mm $(0,035 d_n)$ mm,

rounded up to the next 0,1 mm.

6.3 Wall thicknesses and their tolerances

The wall thickness shall be in accordance with Table 2.

NOTE: The relationship between PN, MRS, S and SDR

is given in Annex B.

						Pipe	series					
	SD	R 6	SD	R 7,4	SD	R 9	SDF	R 11	SDR	13,6	SDF	र 17
	s	2,5	s	3,2	s	4	s	5	S	6,3	S 8	
			•		Noi	minal pre b	essure (P ar	N) ^a		PX-		
PE 40	-	_	PI	N 10	PI	8 1	-	_	TPM 5		PN	14
PE 63	-	_		_	-	_	PN	110	C PN	8 8	_	_
PE 80	PN	25	PI	N 20	PN	16	PN	12,50	PN	10	PN	8
PE 100	-	_	PI	N 25	PN	20	CR	16	PN	12,5	PN	10
Neminal						Wall thic	knesses	ь	•			
size												
	e _{min}	e _{max}	e _{min}	e _{max}	emin	e _{max}	e _{min}	e _{max}	e _{min}	e _{max}	e _{min}	e _{max}
16	3,0	3,4	2,3 °	2,7	€ 2 ,0 °	2,3	—	-	-	—	—	—
20	3,4	3,9	3,0	000	2,3 °	2,7	2,0 °	2,3	-	—	—	—
25	4,2	4,8	3,5	4,0	3,0	3,4	2,3 °	2,7	2,0 °	2,3	—	—
32	5,4	6,1	04,4	5,0	3,6	4,1	3,0	3,4	2,4	2,8	2,0 °	2,3
•	· .	~ ⁻ ⁻ ⁻	,				•					
40	6,7	Y,5	5,5	6,2	4,5	5,1	3,7	4,2	3,0	3,5	2,4	2,8
50	8,3	9,3	<mark>6,9</mark>	7,7	5,6	6,3	4,6	5,2	3,7	4,2	3,0	3,4
63	10,5	11,7	8,6	9,6	7,1	8,0	5,8	6,5	4,7	5,3	3,8	4,3
75	12,5	13,9	10,3	11,5	8,4	9,4	6,8	7,6	5,6	6,3	4,5	5,1
90	15,0	16,7	12,3	13,7	10,1	11,3	8,2	9,2	6,7	7,5	5,4	6,1
110	18,3	20,3	15,1	16,8	12,3	13,7	10,0	11,1	8,1	9,1	6,6	7,4
125	20,8	23,0	17,1	19,0	14,0	15,6	11,4	12,7	9,2	10,3	7,4	8,3
140	23,3	25,8	19,2	21,3	15,7	17,4	12,7	14,1	10,3	11,5	8,3	9,3
160	26.6	29.4	21.0	24.2	17.9	10.8	14.6	16.2	11.8	13.1	9.5	10.6
180	29.9	33.0	24.6	27.2	20.1	22.3	16.4	18.2	13.3	14.8	10.7	11.9
200	33,2	36,7	27,4	30,3	22,4	24,8	18,2	20,2	14,7	16.3	11.9	13,2
225	37,4	41,3	30,8	34,0	25,2	27,9	20,5	22,7	16,6	18,4	13,4	14,9
I	I	I	I	I	I	I	I		l			I
250	41,5	45,8	34,2	37,8	27,9	30,8	22,7	25,1	18,4	20,4	14,8	16,4
280	46,5	51,3	38,3	42,3	31,3	34,6	25,4	28,1	20,6	22,8	16,6	18,4
315	52,3	57,7	43,1	47,6	35,2	38,9	28,6	31,6	23,2	25,7	18,7	20,7
355	59,0	65,0	48,5	53,5	39,7	43,8	32,2	35,6	26,1	28,9	21,1	23,4
												1

Table 2 — Wall thicknesses

Table 2 (continued)

						Pipe	series						
	SD	R 6	SD	R 7,4	SD	R 9	SD	DR 11	SD	R 13,6	SE	SDR 17	
	S	2,5	S	3,2	s	3 4		S 5	s	S 6,3		S 8	
					No	minal pr	essure (I bar	PN) ^a					
PE 40	-	_	PI	N 10	P	N 8		_	P	N 5	F	YN 4	
PE 63	-	_		_	-	_	P	N 10	P	N 8		_	
PE 80	PN	25	PI	N 20	PN	N 16	PN	12,5	PI	N 10	P	N 8	
PE 100	-	_	PI	N 25	PN	1 20	P	N 16	PN	12,5	P	N 10	
Nominal						Wall thi	knesses	b					
size						 	nm						
	e _{min}	e _{max}	e _{min}	e _{max}	e _{min}	e _{max}	e _{min}	e _{max}	e _{min}	e _{max}	e _{min}	e _{max}	
400	-	-	54,7	60,3	44,7	49,3	36,3	40,1	29,4	32,5	23,7	26,2	
450	_	-	61,5	67,8	50,3	55,5	40,9	45,1	BI	36,6	26,7	29,5	
500	-	-	-	-	55,8	61,5	45,4	50,1	36,8	40,6	29,7	32,8	
560	_	-	-	-	62,5	68,9	50,8	59,0	41,2	45,5	33,2	36,7	
		1					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0 - 4		
630	-	_	-	-	70,3	77,5	7,2	63,1	46,3	51,1	37,4	41,3	
710	-	-	-	-	79,3	V87,4	64,5	71,1	52,2	57,6	42,1	46,5	
800	-	-	-	-	89,3	98,4	72,6	80,0	58,8	64,8	47,4	52,3	
900	-	-	-	3	-	-	81,7	90,0	66,2	73,0	53,3	58,8	
			~	5									
1 000	-	- 5	Or	-	-	-	90,2	99,4	72,5	79,9	59,3	65,4	
1 200	- ,	<u> </u>	-	-	-	—	—	—	88,2	97,2	67,9	74,8	
1 400	$\overline{\mathbf{A}}$	<u>~</u>	-	-	-	—	_	—	102,9	113,3	82,4	90,8	
1 600	7.	-	-	-	—	—	-	—	117,6	129,5	94,1	103,7	
1 800	-	-	-	-	-	—	-	—	-	-	105,9	116,6	
2 000	-	-	-	-	-	—	-	_	-	-	117,6	129,5	

Table 2 (continued)

	Pipe series									
	SDF	R 21	SDR	26	SDR	33	SDR 4	11		
	S	10	S 12	2,5	S 1	6	S 20)		
				Nominal pres ba	sure (PN) ª					
PE 40	PN	3,2	PN	2,5	_		-			
PE 63	PN	15	PN	4	PN 3	,2	PN 2	,5		
PE 80	PN	6 ^d	PN 5		PN 4		PN 3	,2		
PE 100	PN	8 8	PN 6 °		PN	5	PN 4	4		
Nominal		Wall thicknesses ^b mm								
size	e _{min}	e _{max}	e _{min}	e _{max}	e _{min}	e _{max}	e _{min}	e _{max}		
16	-	-	-	-	-	-	-04	-		
20	-	-	-	-	-	-	m-r	-		
25	-	-	-	-	-	-04	-	-		
32	-	-	-	-	- ,	9-	-	-		
40	2,0 °	2,3	_	_	0501	_	_	_		
50	2,4	2,8	2,0	2,3 N	• 5	_	_	_		
63	3,0	3,4	2,5	REN	-	-	-	-		
75	3,6	4,1	sale	3,3	-	-	-	-		
90	4,3	4.05	3,5	4,0	_	_	_			
110	5,3	\$,0	4,2	4,8	-	-	-	-		
125	6,00	6,7	4,8	5,4	-	-	-	-		
140	6,7	7,5	5,4	6,1	-	-	-	-		
160	7,7	8,6	6,2	7,0	_	_	_	_		
180	8,6	9,6	6,9	7,7	-	-	-	-		
200	9,6	10,7	7,7	8,6	-	-	-	-		
225	10,8	12,0	8,6	9,6	-	-	_	-		
250	11.0	12.0	0.6	10.7						
200	12 /	14.0	10.7	11.0		_				
200	15,4	16.6	10,7	12.5	0.7	10.9	77	-		
310	16.0	10,0	12,1	15,5	9,7	10,0	0.7	0,0		
300	10,9	10,/	13,0	15,1	10,9	12,1	0,/	9,7		
				1	1					

Table 2 (continued)

				Pipe	series			
	SD	R 21	SDI	R 26	SDI	R 33	SDF	R 41
	S	10	S 1	2,5	S	16	S 20	
				Nominal pre b	essure (PN) ^a bar			
PE 40	PN	3,2	PN	2,5	-	_	-	_
PE 63	P	N 5	PI	N 4	PN	3,2	PN	2,5
PE 80	PN	l 6 ^d	PI	N 5	PI	N 4	PN	3,2
PE 100	P	N 8	PN	6 ^c	P	N 5	PN	14
Nominal	Wall thicknesses ^b mm							
5120	e _{min}	e _{max}	e _{min}	e _{max}	e _{min}	e _{max}	emin	e _{max}
400	19,1	21,2	15,3	17,0	12,3	13,7	29,8	10,9
450	21,5	23,8	17,2	19,1	13,8	15,3	11,0	12,2
500	23,9	26,4	19,1	21,2	15,3	17,0	12,3	13,7
560	26,7	29,5	21,4	23,7	17,2	19,1	13,7	15,2
630	30,0	33,1	24,1	26,7	Q 19,3	21,4	15,4	17,1
710	33,9	37,4	27,2	REACH	21,8	24,1	17,4	19,3
800	38,1	42,1	30,6	33,8	24,5	27,1	19,6	21,7
900	42,9	47,3	34.4]	38,3	27,6	30,5	22,0	24,3
	1	~		I	I	I	I I	1
1 000	47,7	52,6	38,2	42,2	30,6	33,5	24,5	27,1
1 200	57,0	63,1	45,9	50,6	36,7	40,5	29,4	32,5
1 400	66,7	73,5	53,5	59,0	42,9	47,3	34,3	37,9
1 600	76,2	84,0	61,2	67,5	49,0	54,0	39,2	43,3
1 800	85,7	94,4	69,1	76,2	54,5	60,1	43,8	48,3
2 000	95,2	104,9	76,9	84,7	60,6	66,8	48,8	53,8
NOTE	1 bar = 0,1 MF	Pa = 10 ⁵ Pa; 1 M	$MPa = 1 N/mm^2$.					

a PN values are based on C = 1,25.

^b Tolerances in accordance with ISO 11922-1:1997, grade V, calculated from $(0,1e_{min} + 0,1)$ mm rounded up to the next 0,1 mm. For certain applications for e > 30 mm, ISO 11922-1:1997, grade T, tolerances may be used calculated from 0,15 e_{min} rounded up to the next 0,1 mm.

^c The calculated value of *e*_{min} according to ISO 4065 is rounded up to the nearest value of either 2,0, 2,3 or 3,0. This is to satisfy certain national requirements. For practical reasons, a wall thickness of 3,0 mm is recommended for electrofusion jointing and lining applications.

d Actual calculated values are 6,4 bar for PE 100 and 6,3 bar for PE 80.

6.4 Coiled pipe

The pipe shall be coiled such that localized deformation, e.g. buckling and kinking, is prevented.

The minimum internal diameter of the coil shall be not less than $18d_{n}$.

6.5 Lengths

No requirements have been set concerning particular lengths of coiled or straight pipe or the tolerance thereon; hence, it is necessary for lengths of pipe to be supplied by agreement between purchaser and manufacturer.

7 Mechanical characteristics 7.1 Conditioning

Unless otherwise specified in the applicable test method, the test pieces shall be conditioned at (23 ± 2) °C prior to testing.

7.2 Requirements

The test pieces shall be tested in accordance with Table 3. When tested using the test method and parameters specified therein, the pipe shall have mechanical characteristics conforming to the requirements of Table 3.

Characteristic	Requirement	Test pa	rameters	Test method(s)	
Characteristic	Requirement	Parameter	Value		
Hydrostatic strength	No failure of any test	End caps	Type a) a		
at 20 °C	piece during test period	Conditioning period	According to 100 1167-1		
		Number of test pieces ^b	C ³		
		Type of test	Water-in-water		
		Test temperature	20 °C		
		Test period	100 h	ISO 1167-1	
		Circumterential (hoop) stress for:		ISO 1167-2	
	<u>ν</u> ε	PE 40	7,0 MPa		
	gar .	PE 63	8,0 MPa		
	-1- ⁻	PE 80	10,0 MPa		
	£0°	PE 100	12,4 MPa		

Table 3 — Mechanical characteristics

Table 3 (continued)

Characteristic	Requirement	Test pa	rameters	Test method(s)
Characteristic	Requirement	Parameter	Value	rest method(s)
Hydrostatic strength	No failure of any test	End caps	Type a) ^a	
at 80 °C	piece during test period	Conditioning period	According to ISO 1167-1	
		Number of test pieces b	3	
		Type of test	Water-in-water	
		Test temperature	80 °C	
		Test period	165 h ^c	ISO 1167-1
		Circumferential (hoop) stress for:		ISO 1167-2
		PE 40	2,5 MPa	
		PE 63	3,5 MPa	
		PE 80	4,5 MPa	
		PE 100	5,4 MPa	

	L		I	
Hydrostatic strength	No failure of any test	End caps	Type a) ^a	
at 80 °C	piece during test period	Conditioning period	According to ISO 1167-1	
		Number of test pieces ^b	3	
		Type of test	Water-in-water	
		Test temperature	80 °C	
		Test period	1 000 h	ISO 1167-1
		Circumferential (hoop) stress for:		ISO 1167-2
		PE 40	2,0 MPa	
		PE 63	3,2 MPa	
		PE 80	4,0 MPa	
		PE 100	5,0 MPa	
NOTE The characteri of pipe.	istic resistance to slow crack	growth is dealt with in ISO 4	427-1 as a material property n	neasured in the form
a Type b) end caps may	be used for batch release tes	ts for diameters ≥ 500 mm.	n.E	
^b The number of test pie The number of test pieces re	eces given indicates the quar equired for factory production	ntity required to establish a control and process control	value for the characteristic de should be listed in the manufac	scribed in this table. cturer's quality plan.
c Premature ductile failur	res are not to be taken into ac	count. For retest procedure,	see 7.3.	

7.3 Retest in case of failure at 80 °C

A fracture in a brittle mode in less than 165 h shall constitute a failure; however, if a sample in the 165 h test fails in a ductile mode in less than 165 h, a retest shall be performed at a selected lower stress in order to achieve the minimum required time for the selected stress obtained from the line through the stress/time points given in Table 4.

PE 40 5		05	PE 63		PE 80	PE 100		
Stress MPa	Test period	Stress MPa	Test period h	Stress MPa	Test period h	Stress MPa	Test period h	
2,5	165	3,5	165	4,5	165	5,4	165	
2,4	230	3,4	295	4,4	233	5,3	256	
2,3	323	3,3	538	4,3	331	5,2	399	
2,2	463	3,2	1 000	4,2	474	5,1	629	
2,1	675			4,1	685	5,0	1 000	
2,0	1 000			4,0	1 000			

Table 4 — Test parameters for the retest of the hydrostatic strength at 80°C

8 Physical characteristics

8.1 Conditioning

Unless otherwise specified in the applicable test method, the test pieces shall be conditioned at (23 ± 2) °C prior to testing.

8.2 Requirements

The test pieces shall be tested in accordance with Table 5. When tested using the test method and parameters specified therein, the pipe shall have physical characteristics conforming to the requirements of Table 5.

	Devices	Test par	ameters	T		
Characteristic	Requirement	Parameter	Value	lest method(s)		
-		Test piece shape	Type 2	ISO 6259-1		
Elongation at break for $e \leq 5$ mm	≥ 350 %	Test speed	100 mm/min	ISO 6259-1		
		Number of test pieces b	According to ISO 6259	100 0200-0		
		Test piece shape	Type 1 ^a	150 6259-1		
Elongation at break for 5 mm < $e \le 12$ mm	≥ 350 %	Test speed	50 mm/min	150 6259-1		
		Number of test pieces ^b	According to ISO 6259	130 0239-3		
		Test piece shape	Type 1 ^a			
		Test speed	25 mm/min			
		Number of test pieces b	According to ISO 6259	150 6259-1		
Elongation at break for $e > 12 \text{ mm}$	≥ 350 %	0	R	ISO 6259-3		
		Test piece shape	Type 3 a	100 0200-0		
		Test speed	10 mm/min	~		
		Number of test pieces b	According to ISO 6259			
I	1	1	<u>ر</u> ٥٠٠	1		
		Shape and number of test pieces ^c	According to ISO 2505			
	≤ 3 %	Test temperature:	₽. A			
Longitudinal reversion	No effect on surface	PE 40	100 ± 2 °C	ISO 2505		
		PE 63, PEN80, PE 100	110 ± 2 °C			
		Time 🔨	See ISO 2505			
	1	Gad	2,16 kg			
Melt mass-flow rate	Change of MFR	Test temperature	190 °C	ISO 1133:2005,		
MFR for PE 40	processing ± 20% d	Time	10 min	Condition D		
	502	Number of test pieces ^b	According to ISO 1133			
		Load	5,0 kg			
Melt mass-flow rate	Change of MFR by	Test temperature	190 °C	ISO 1133:2005,		
80, PE 100	processing ± 20 % d	Time	10 min	Condition T		
		Number of test pieces b	According to ISO 1133			
Oxidation induction	> 20 min	Test temperature	200 °C °	ISO 11357-6:2002		
time	22011111	Number of test pieces b, f	3	1007 0.2002		

Table 5 — Physical characteristics — All pipes

L			1
Effect on water quality	National regulation	ns apply	
a	 		

^a Where practical, machined type 2 test pieces may be used for pipe wall thicknesses ≤ 25 mm. The test may be terminated when the requirement is met, without continuing until the rupture of the test piece.

^b The number of test pieces given indicates the quantity required to establish a value for the characteristic described in this table. The number of test pieces required for factory production control and process control should be listed in the manufacturer's quality plan.

c For pipes with an outside diameter > 200 mm, longitudinally cut segments may be used.

^d Value as measured on the pipe relative to the value measured on the compound used.

^e The test may be carried out as an indirect test at 210 °C provided there is a clear correlation to the results at 200 °C. In case of dispute, the reference temperature shall be 200 °C.

Samples are to be taken from the inner wall surface.

9 Chemical characteristics of pipes in contact with chemicals

If, for a particular installation, it is necessary to evaluate the chemical resistance of the pipe, then the pipe shall be classified in accordance with ISO 4433-1 and ISO 4433-2.

NOTE Guidance for the resistance of polyethylene pipes to chemicals is given in ISO/TR 10358

10 Performance requirements

When pipes conforming to this part of ISO 4427 are assembled to each other or to components conforming to other parts of ISO 4427, the joints shall be in accordance with ISO 4427-5.

11 Marking 11.1 General

All pipes shall be permanently and legibly marked in such a way that the marking does not initiate cracks or other types of failure and such that normal storage, weathering, handling, installation and use does not affect the legibility of the marking.

If printing is used, the colour of the printed information shall differ from the basic colour of the product.

The marking shall be such that it is legible without magnification.

11.2 Minimum required marking of pipes

The minimum required marking shall be in accordance with Table 6, with the frequency of marking being not less than once per metre.

Annex A (normative)

Layered pipes

A.1 General

This annex specifies the additional geometrical, mechanical and physical properties of layered polyethylene (PE) pipes intended to be used for the supply of water. Additional marking requirements are given in A.3.4.

Two types of layered pipes are covered:

- a) PE pipes with a co-extruded black or pigmented layer of the same MRS rating on the outside of the pipe (total outside diameter d n) (see A.2);
- b) PE pipes (outside diameter d_n with a nonbonded, contiguous, thermoplastics additional layer on the outside of the pipe ("coated pipe") and thus having a total outside diameter of d_n + 2e coating (see A.3).

NOTE: Other types of layered pipes could be covered by other standards (e.g. References [3] and [4]).

A.2 Pipe with coloured identification layer A.2.1 Geometrical characteristics

The geometrical characteristics of the pipe, inclusive of the coloured identification layer, shall be in accordance with Clause 6.

A.2.2 Mechanical characteristics

The mechanical characteristics of the pipe, inclusive of the coloured identification layer, shall be in accordance with Clause 7.

A.2.3 Physical characteristics

The physical characteristics shall be in accordance with Clause 8. The requirements for thermal stability (OIT) and for melt-flow rate shall apply to the individual layers respectively. Longitudinal heat reversion shall be applicable to the pipe, inclusive of the coloured identification layer.

A.2.4 Marking

The marking of pipes with coloured identification layers shall be in accordance with Clause 11.

A.3 Coated pipe

A.3.1 Geometrical characteristics

The geometrical characteristics of the pipe, exclusive of the coating, shall be in accordance with Clause 6.

A.3.2 Mechanical characteristics

The mechanical characteristics of the pipe, exclusive of the coating, shall be in accordance with Clause 7. The coating shall not have a detrimental effect on the ability of the pipe to conform to Clause 7.

It is preferred that the pipe be tested exclusive of the coating. If the pipe is tested with the coating attached, it shall be ensured that the conditions selected result in the pipe being subjected to the specified test stress. In case of dispute, the pipe shall be tested exclusive of its coating.

A.3.3 Physical characteristics

The physical characteristics of the pipe, exclusive of the coating, shall be in accordance with Clause 8. The coating shall not have a detrimental effect on the pipe or vice versa.

A.3.4 Marking

Marking shall be applied to the ceating and shall be in accordance with Clause 11

In addition, the coating shall be provided with marking clearly distinguishing the pipe from non-coated pipe in service (e.g. by broad colour bands). The coating shall also carry marking warning that the coating must be removed pror to fusion and mechanical jointing.

Gal Ginformative) Relationship between PN, MRS, S and SDR

The relationship between nominal pressure, PN, design stress, σ_s , and the series S/SDR is given by the following equation

Annex B

$$PN = \frac{10\sigma_S}{S}$$
 or $PN = \frac{20\sigma_S}{SDR - 1}$

Examples of the relationship between PN, MRS, S, and SDR based on

$$\sigma_{\rm S} = \frac{\rm MRS}{C}$$

are given in Table B.1, where C = 1,25.

NOTE The nominal pressures (PN) given in Table B.1 are based on the use of an overall design coefficient of C = 1,25. However, if a higher value for C is required, the PN values will have to be recalculated using the above equations and based on the calculated design stress, σ_s , for each material class. A higher value for C can also be obtained by choosing a higher PN class.

SDR	s	Nominal pressure for material class bar						
		PE 40	PE 63	PE 80	PE 100			
41	20	_	2,5	3,2	4			
33	16	_	3,2	4	5			
26	12,5	2,5	4	5	6 ª			
21	10	3,2	5	6 ª	8			
17	8	4	6 ª	8	10			
13,6	6,3	5	8	10	12,5			
11	5	_	10	12,5	16			
9	4	8	_	16	20			
7,4	3,2	10	_	20	25			
6	2,5	_	_	25	_			
NOTE 1 bar =	NOTE 1 bar = 0,1 MPa = 10 ⁵ Pa; 1 MPa = 1 N/mm ² .							
^a Actual calculated values are 6,4 bar for PE 100 and 6,3 bar for PE 80 and PE 63.								
				~ Oth				

Table B.1 — Examples of the relationship between PN, MRS, S and SDR at 20 °C (C = 1,25)

AMENDMENT 2. Pages 6 to 7, 6.3 Restore "PN 6" column titles in Table 2; replace:

Table 2 – Wall thicknesses

	Pipe series										
	SDR 6	O SDR 7,4	SDR 9	SDR 11	SDR 13,6	SDR 17					
	S 2,5	\$ 3,2	S 4	S 5	S 6,3	S 8					
	Nominal pressure (PN) ^a										
	bar										
PE 40	—	PN 10	PN 8	—	PN 5	PN 4					
PE 63	—	—	—	PN 10	PN 8	—					
PE 80	PN 25	PN 20	PN 16	PN 12,5	PN 10	PN 8					
PE 100	_	PN 25	PN 20	PN 16	PN 12,5	PN 10					

with the following:

	Pipe series								
	SDR 6	SDR 7,4	SDR 9	SDR 11	SDR 13,6	SDR 17			
	S 2,5	\$ 3,2	S 4	S 5	<mark>S 6</mark> ,3	S 8			
	Nominal pressure (PN) ^a								
	bar								
PE 40	—	PN 10	PN 8	PN 6	PN 5	PN 4			
PE 63	—	—	—	PN 10	PN 8	PN 6			
PE 80	PN 25	PN 20	PN 16	PN 12,5	PN 10	PN 8			
PE 100	_	PN 25	PN 20	PN 16	PN 12,5	PN 10			

Table 2 — Wall thicknesses

nucle not for sale www.psgca.com.pk